Enzyme - définition. Qu'est-ce que Enzyme
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Enzyme - définition

LARGE BIOLOGICAL MOLECULE THAT ACTS AS A CATALYST
Apoenzyme; Holoenzyme; Enzymes; ENZ; Enzyme action; Mechanisms of enzyme action; Enzymatic; Lock-and-key model (enzyme); Enyzme; Enzymology; Biocatalyst; Biocatalysts; Lock and Key Theory; Enzyme-substrate complex; ENZYME STRUCTURE AND FUNCTION; Holoenzymes; Apoenzymes; Enzymatically; Lock and key model; Encyme; Ensyme; Enyme characteristics; Cofactors and coenzymes; Coenzymes and cofactors; Enzymic; Enzyme preparations; Lock-and-key model; Lock and key theory; Enzime; Haloenzyme; Enzyme type; Regulation mechanism; Enzyme regulation; Carbamidase
  • recessive]] fashion because the enzymes from the unaffected genes are generally sufficient to prevent symptoms in carriers.
  • The energies of the stages of a [[chemical reaction]]. Uncatalysed (dashed line), substrates need a lot of [[activation energy]] to reach a [[transition state]], which then decays into lower-energy products. When enzyme catalysed (solid line), the enzyme binds the substrates (ES), then stabilizes the transition state (ES<sup>‡</sup>) to reduce the activation energy required to produce products (EP) which are finally released.
  • alt=Lysozyme displayed as an opaque globular surface with a pronounced cleft which the substrate depicted as a stick diagram snuggly fits into.
  • alt=Ribbon diagram of glycosidase with an arrow showing the cleavage of the maltose sugar substrate into two glucose products.
  • 2E2Q}})
  • 1KW0}})
  • alt=A graph showing that reaction rate increases exponentially with temperature until denaturation causes it to decrease again.
  • 4KXV}})

enzyme         
(enzymes)
An enzyme is a chemical substance that is found in living creatures which produces changes in other substances without being changed itself. (TECHNICAL)
N-COUNT
Enzyme         
Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. Metabolic pathways depend upon enzymes to catalyze individual steps. The study of enzymes is called enzymology and the field of pseudoenzyme analysis recognizes that during evolution, some enzymes have lost the ability to carry out biological catalysis, which is often reflected in their amino acid sequences and unusual 'pseudocatalytic' properties.
Enzyme         
·noun An unorganized or unformed ferment, in distinction from an organized or living ferment; a soluble, or chemical, ferment. Ptyalin, pepsin, diastase, and rennet are good examples of enzymes.

Wikipédia

Enzyme

Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life.: 8.1  Metabolic pathways depend upon enzymes to catalyze individual steps. The study of enzymes is called enzymology and the field of pseudoenzyme analysis recognizes that during evolution, some enzymes have lost the ability to carry out biological catalysis, which is often reflected in their amino acid sequences and unusual 'pseudocatalytic' properties.

Enzymes are known to catalyze more than 5,000 biochemical reaction types. Other biocatalysts are catalytic RNA molecules, called ribozymes. Enzymes' specificity comes from their unique three-dimensional structures.

Like all catalysts, enzymes increase the reaction rate by lowering its activation energy. Some enzymes can make their conversion of substrate to product occur many millions of times faster. An extreme example is orotidine 5'-phosphate decarboxylase, which allows a reaction that would otherwise take millions of years to occur in milliseconds. Chemically, enzymes are like any catalyst and are not consumed in chemical reactions, nor do they alter the equilibrium of a reaction. Enzymes differ from most other catalysts by being much more specific. Enzyme activity can be affected by other molecules: inhibitors are molecules that decrease enzyme activity, and activators are molecules that increase activity. Many therapeutic drugs and poisons are enzyme inhibitors. An enzyme's activity decreases markedly outside its optimal temperature and pH, and many enzymes are (permanently) denatured when exposed to excessive heat, losing their structure and catalytic properties.

Some enzymes are used commercially, for example, in the synthesis of antibiotics. Some household products use enzymes to speed up chemical reactions: enzymes in biological washing powders break down protein, starch or fat stains on clothes, and enzymes in meat tenderizer break down proteins into smaller molecules, making the meat easier to chew.

Exemples du corpus de texte pour Enzyme
1. ELISA stands for enzyme–linked immunosorbent assay.
2. Eliminating the enzyme should stop the infection, Mesecar said.
3. Both of these boost levels of the enzyme involved.
4. The film "Newly Discovered Enzyme Dissolving Fur–Protein" introduces an enzyme that will make a great contribution to the development of stock–breeding and fish farming.
5. Scientists knew that the body makes cholesterol with the help of a particular enzyme, and he reasoned that interfering with this enzyme might lower cholesterol.